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1. Preliminary

Lemma 1.1 (Smith Normal Form). Let A be a nonzero m×n matrix over a principal ideal domain(PID)
R. There exist invertible m×m and n× n matrices P,Q so that

(1) P−1AQ−1 = Diag(α1, · · · , αr),

where αi | αi+1 for i < r, here the last few terms can be 0.

The matrices P and Q may not be products of elementary matrices in general (see [1, p.23]). When the
ring R is Euclidean, then it is possible to find P and Q through elementary row/column operations.

Lemma 1.2 (Structure Theorem over PID, Invariant factor decomposition). Every finitely generated mod-
ule M over a PID R is isomorphic to a unique one of the form

(2) Rf
⊕

⊕r
i=1R/(di),

where di | di+1, and di ̸= (0). The summands are called the invariant factors.

Lemma 1.3 (Structure Theorem over PID, Primary decomposition). Conditions are the same as above,
M is isomorphic to a unique one of the form

(3) Rf
⊕

⊕s
i=1R/(prii ),

where pi are prime ideals.

2. Theorems

We regard a left-multiplication of an n × n matrix A over a field F as F[x]-module element, namely
x. Then Fn can be viewed as an F[x]-module with p(x) ∈ F[x] acting as p(A) ∈ Mn×n(F), denoted as
MA. Note that for any field F, the polynomial ring F[x] is an ED (Euclidean Domain), hence a PID. Our
application of the structure theorem in invariant factor form is

Theorem 2.1 (Rational Canonical Form-Invariant factor form). Let A be a n × n matrix over a field F.
Then A is similar to a block diagonal matrix of the form

(4) ⊕r
i=1C(fi),

where fi | fi+1, and C(fi) is the companion matrix associated to fi. This form is unique up to rearrangement
of blocks.

Using primary decomposition, we have

Theorem 2.2 (Rational Canonical Form-Primary decomposition). Conditions are the same as above, A
is similar to a block diagonal matrix of the form

(5) ⊕s
i=1C(prii ),

where pi are irreducible polynomials in F[x]. This form is unique up to rearrangement of blocks.

For the proof, use structure theorem to the F[x]-module MA as described above.
If the ground field is algebraically closed, then we have Jordan Canonical Form.
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Theorem 2.3 (Jordan Canonical Form). Let A be a n × n matrix over an algebraically closed field F.
Then A is similar to a block diagonal matrix of the form

(6) ⊕s
i=1J(λi, ri),

where λi are the eigenvalues of A, and J(λi, ri) is the Jordan block of diagonal λi and 1 directly below the
main diagonal with size ri × ri. This form is unique up to rearrangement of blocks.

Theorem 2.4 (Generalized Jordan Form). Let A be a n× n matrix over a field F. Then A is similar to
a block diagonal matrix of the form

(7) ⊕s
i=1J(pi, ri),

where pi are the irreducible factors of the characteristic polynomial of A, and J(pi, ri) is the generalized
Jordan block of the form 

C(pi) 0 0 · · · 0
U C(pi) 0 · · · 0
0 U C(pi) · · · 0
...

. . .
. . .

. . . 0
0 0 · · · U C(pi)


with the matrix U whose sole nonzero entry 1 on the upper right corner, and ri is the number of diagonal
blocks. This form is unique up to rearrangement of blocks.

For the proof of Theorem 2.4, note that J(p, r) is for the F[x]-module F[x]/(pr). Consider the expression
f(x) = a0(x) + a1(x)p(x) + · · ·+ ar−1(x)p(x)

r−1 ∈ F[x]/(pr),
where ai(x) ∈ F[x], deg(ai) < deg(p).

Now, the problem reduces to determining invariant factors. We use Smith Normal Form to do this.

Theorem 2.5 (Invariant Factors). Let A be a n× n matrix over a field F. Then invariant factors can be
recovered from the Smith Normal Form of xI −A. More precisely, if P−1(xI −A)Q−1 = Diag(f1, · · · , fn)
for some invertible matrices P,Q and fi | fi+1, then fi are the invariant factors of A.

Here, first few terms can be 1. The proof starts from investigating the exact sequence

(8) 0 −→ F[x]n xI−A−−−→ F[x]n π−→ MA −→ 0.

Then we see that
MA ≃ F[x]n/Im(xI −A).

Corollary 2.1 (Similarity of Transpose). Let A be a n×n matrix over a field F. Then A and its transpose
AT are similar.

Proof. Write xI − A = PDQ where P,Q are invertible in Mn×n(F[x]) and the Smith Normal Form D.
Taking transpose, we have

xI −AT = QTDTP T = QTDP T .

Since QT , P T are also invertible, we see that xI −A and xI −AT have the same invariant factors. □

Corollary 2.2 (Computation of Similarity Transform for Transpose). Let A be n× n matrix over a field
F. Then we are able to compute the nonsingular similarity transform X such that XA = ATX.

Proof. Let xI−A = PDQ with intertible P,Q ∈ Mn×n(F[x]) and D be the Smith Normal Form of A. Note
that the computation of Smith Normal Form is essentially elementary row/column operations. Thus, we
keep track of row/column operations on xI −A, and P is obtained by a product of inverses of elementary
matrices corresponding to the row operations, Q by a product of those inverses of column operations.

Then xI −A = PDQ and xI −AT = QTDP T yield an F[x]-module isomorphism

F[x]n/Im(xI −A)
QTP−1

−−−−−→ F[x]n/Im(xI −AT ).

We may regard the module isomorphism as a vector-space isomorphism between MA and MAT
. This

isomorphism is obtained by writing QTP−1 ∈ Mn×n(F[x]) with x replaced by the left multiplication of AT .
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Write the resulting matrix as X. Then X is nonsingular since it is an isomorphism between n-dimensional
vector spaces. Since QTP−1 is an F[x]-module isomorphism, it commutes with the action of x. Since the

action of x in MA is the left multiplication of A, and that in MAT
is the left multiplication of AT , we have

XA = ATX. □

Note that this method can be applied in finding a similarity transform to any given two similar matrices.

Example 2.1. Let A =

(
2 3
5 7

)
. Then the elementary row/column operations on xI −A yield the Smith

Normal Form

P−1(xI −A)Q−1 =

(
1

x2 − 9x− 1

)
.

Here, we have

P =

(
−3

x− 7 1

)
, Q =

(
−x−2

3 1
1
3

)
.

Then,

QTP−1 =

(
2x−9
9

1
3

−1
3

)
= x

(
2
9

)
+

(
−1 1

3
−1

3

)
.

This gives the nonsingular matrix X,

X =

(
2 5
3 7

)(
2
9

)
+

(
−1 1

3
−1

3

)
=

(
−5

9
1
3

1
3

)
.

For this X, we have

XA =

(
5
9

2
3

2
3 1

)
= ATX.

Note that in this method, we do not need to fully produce a Smith Normal Form for A. We just need
a diagonal D in the elementary row/column operations. This makes the calculation of P and Q simpler.
With this simpler procedure, we have the following general result.

Example 2.2. In general, let A =

(
a b
c d

)
. If b ̸= 0,(

1
1

)(
1

x−d
b 1

)(
x− a −b
−c x− d

)(
1

x−a
b 1

)
=

(
−c+ (x−a)(x−d)

b
−b

)
.

With P−1 =

(
1

1

)(
1

x−d
b 1

)
and Q =

(
1

−x−a
b 1

)
, we have QTP−1 =

(
a−d
b 1
1

)
.

Case 1: b ̸= 0, we can take X =

(
a−d
b 1
1

)
. Then XA = ATX.

Case 2: b = 0, c ̸= 0, then we take X =

(
a−d
c 1
1

)
. Then XAT = AX.

Case 3: b = c = 0, then A is diagonal, and X = I works.

Corollary 2.3 (Similarity Preserved by Field Extension). Let A and B be n× n matrices over a field K.
Let L be a field extension of K. Then A and B are similar over K if and only if they are similar over L.

Proof. ⇒) is obvious.
⇐) Let {Ai} be the complete set of invariant factors of A, and {Bi} that of B. Then we have

L⊗K (⊕iK[x]/(Ai)) = ⊕iL[x]/(Ai),

and

L⊗K (⊕iK[x]/(Bi)) = ⊕iL[x]/(Bi).

Since A and B are similar over L, we see that the RHS of the above formulas should be equal. Hence the
sets of invariant factors {Ai} and {Bi} are identical, yielding that A and B are similar over K. □
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Theorem 2.6 (Centralizer of a Matrix). Let A be a n×n matrix over F. Let CA = {B ∈ Mn×n(F) | AB =
BA}. Then the minimal dimension of CA over F is n, and this is obtained precisely when the minimal
polynomial and characteristic polynomial of A coincide.

The idea of proof is interpreting CA as an F[x]-endomorphism algebra of the F[x]-module MA (as
described above). We use the Rational Canonical Form-Primary decomposition MA =

⊕
p
⊕
i
F[x]/(pλp,i).

Then CA can be written as

CA ≃ EndF[x]M
A ≃

⊕
p

⊕
i,j

HomF[x](F[x]/(pλp,i),F[x]/(pλp,j )).

where the first sum is over all irreducible polynomials p that divides the characteristic polynomial of A,
and the indices i, j of second double sum is from the partition λp =

∑
i λp,i that indicates the powers of p

in p-primary part of MA. We then have the formula for dimFCA

(9) dimFCA = dimF EndF[x]M
A =

∑
p

(deg p)
∑
i,j

min{λp,i, λp,j}.

The result we have on dimFCA is a special case of Cecioni-Frobenius Theorem.

Theorem 2.7 (Cecioni-Frobenius). Let A be a m × m matrix, B be a n × n matrix over F. Denote by
νA,B the dimension of CA,B over F where

CA,B = {X ∈ Mm×n(F) | AX −XB = 0}.
Then we have νA,B =

∑
p(deg p)

∑
i,j min{λp,i, µp,j}.

Here the first sum is over all irreducible polynomials p which are common in the primary decompositions
of MA and MB, and the indices i, j of second double sum is from the partition λp =

∑
i λp,i that indicates

the powers of p in p-primary part of MA, µp =
∑

j µp,j that of powers of p in p-primary part of MB.

Proof. Note that CA,B = HomF[x](M
B,MA). Then

νA,B = dimFCA,B = dimF HomF[x](M
B,MA) =

∑
p

(deg p)
∑
i,j

min{λp,i, µp,j}.

□

An obvious application of Cecioni-Frobenius Theorem is

Theorem 2.8 (Sylvester Equation). Let A be a m ×m matrix, B be a n × n matrix, and C be a m × n
matrix over F. Consider a matrix equation AX −XB = C. Then
• The matrix equation AX −XB = C has a unique solution if and only if primary decompositions of MA

and MB have no common irreducible polynomial.
• In case the equation does not have a unique solution, we have

νA,B = dimFCA,B = dimF{X ∈ Mm×n(F) | AX −XB = 0} > 0.

We present a method for determining similarity of two matrices without module theory.

Definition 2.1 (Kronecker Product). Let A ∈ Mm(F), B ∈ Mn(F). The Kronecker Product of the matrices
A and B is defined by

A⊗B =


a11B a12B · · · a1mB
a21B a22B · · · a2mB
...

...
. . .

...
am1B am2B · · · ammB

 .

Let C ∈ Mm×n(F). The vectorization of matrix C is written as vec(C). This is a column vector in Fmn

composed of columns of C.

Lemma 2.1. Let A ∈ Mm(F), B ∈ Mn(F), and X ∈ Mm×n(F). Then

vec(AXB) = (BT ⊗A)vec(X).
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By this lemma, Sylvester equation AX −XB = C can be written as a linear system of mn variables.

(In ⊗A−BT ⊗ Im)vec(X) = vec(C).

Then we have νA,B = Null(In ⊗A−BT ⊗ Im).

Theorem 2.9 (Byrnes-Gauger). Let A ∈ Mm(F), B ∈ Mn(F). Then we have

νA,A + νB,B − 2νA,B ≥ 0.

The equality holds if and only if m = n and the matrices A, B are similar.

Proof. This is a consequence of the following combinatorial inequality.
Let m1 ≤ m2 ≤ · · · ≤ mr, n1 ≤ n2 ≤ · · · ≤ ns be integers. Then∑

i,j

(min(mi,mj) + min(ni, nj)− 2min(mi, nj)) ≥ 0

with equality holds if and only if (mi) and (nj) are identical.
This inequality follows from considering the diagonal and off-diagonal pairs.
Case 1: i = j
We have mi + ni − 2min(mi, ni) ≥ 0 with equality holds if and only if mi = ni for all i.

Case 2: The off-diagonal pairs (i, j) and (j, i) where i < j.

Subcase 2-1: The intervals [mi,mj ] and [ni, nj ] do not overlap.
Without loss of generality, assume mj < ni.
We have mi + ni − 2mi +mi + ni − 2mj = 2ni − 2mj > 0.

Subcase 2-2: The intervals [mi,mj ] and [ni, nj ] overlap.
Without loss of generality, assume mi ≤ ni ≤ mj .
We have mi + ni − 2mi +mi + ni − 2ni = 0.

Thus, the off-diagonal pairs’ contribution are always nonnegative. Considering diagonal contributions,
it is easy to see that the equality holds if and only if the sequences are identical. □

The following criteria for similarity can be checked through elementary row operations on n2 × n2

matrices.

Corollary 2.4. Let A,B ∈ Mn(F). Then A and B are similar if and only if νA,A = νB,B = νA,B. That is,

Null(In ⊗A−AT ⊗ In) = Null(In ⊗B −BT ⊗ In) = Null(In ⊗A−BT ⊗ In).

Since AT and A are similar, we also have by rank-nullity theorem,

Corollary 2.5. Let A,B ∈ Mn(F). Then A and B are similar if and only if

rk(In ⊗A−A⊗ In) = rk(In ⊗B −B ⊗ In) = rk(In ⊗A−B ⊗ In).

Theorem 2.10 (Symmetric Similarity Transform, [11]). Let A be a n × n matrix over F. Suppose also
that the minimal polynomial and characteristic polynomial of A coincide. Then any invertible matrix X
satisfying XA = ATX is symmetric.

Proof. Consider the following system (ΣA) of matrix equations.

(10) XA = ATX,

(11) X = XT .

Note that the below system is equivalent to (ΣA).

(12) XA = ATXT ,

(13) X = XT .
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The linear transform X 7→ (XA−ATXT , X −XT ) has rank at most n2 − n. Thus, the solution space of
the system (ΣA) has dimension at least n.
Now, fix a non-singular transform X0 such that X0A = ATX0. Then

XA = ATX if and only if X−1
0 XA = AX−1

0 X.

This yields an isomorphism X 7→ X−1
0 X between {X | XA = ATX} and CA = {X ′ | X ′A = AX ′}. Since

dimFCA = n, the solution space for (10) has dimension n. Since the solution space for (ΣA) has dimension
≥ n, the dimension must be exactly n. Hence, every matrix X satisfying (10) must also satisfy (11). □

Note that by Cecioni-Frobenius, it is clear that CAT ,A and CA has the same dimension. There is no
need for constructing isomorphism.

For the companion matrix, we have an explicit similarity transform (see [2, Proposition 5.4] and [8]).

Example 2.3. (Similarity Transform for Companion Matrices)
Let p(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0 ∈ F[x] and

C(p) =


0 0 · · · −a0
1 0 · · · −a1
0 1 · · · −a2
...

...
. . .

...
0 0 · · · −an−1


be the companion matrix. Then we have

C(p)Y = Y C(p)T =



−a0 0 0 · · · · · · 0
0 a2 a3 · · · an−1 1

0 a3 . .
.

1
...

... . .
.

. .
.

... an−1 1
0 1


where

Y =



a1 a2 · · · an−2 an−1 1
a2 a3 · · · an−1 1
a3 a4 · · · 1
...

... . .
.

an−1 1
1


.

Theorem 2.11 (Symmetric Similarity Transform 2). Let A be a n× n matrix over a field F. Then there
exists an invertible symmetric matrix X such that XA = ATX.

Proof. Let X0 be an invertible matrix over F such that A = X−1
0 JX0 with J is consisted of blocks on

diagonal, each block is a companion matrix of ps for some irreducible polynomial p and s ≥ 1. Say,
J = diag{C1, . . . , Cr}. Now, we may have distinct blocks in J corresponding to the same irreducible
polynomial. Consider

XA = ATX ⇐⇒ X−T
0 XX−1

0 J = JTX−T
0 XX−1

0 ,

where I used the notation X−T
0 = (X−1

0 )T .
By Theorem 2.10 or Example 2.3, we can find a symmetric invertible matrix corresponding to each

companion matrix in J . Put X−T
0 XX−1

0 = diag{Y1, . . . , Yr} such that YiCi = CT
i Yi and Yi is symmetric

invertible and of the same size with Ci for each 1 ≤ i ≤ r.
Then we can put a symmetric invertible matrix

X = XT
0 diag{Y1, . . . , Yr}X0,

which satisfies XA = ATX. □
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Note that an invertible X with XA = ATX may not be symmetric if the characteristic polynomial and
minimal polynomial of A do not coincide.

Theorem 2.12 (Double Commutant Theorem, [5]). Let A,B be n×n matrix over a field F such that any
matrix that commutes with A also commutes with B. Then B = p(A) for some p ∈ F[x].

Proof. We use rational canonical form-invariant factor form (Theorem 2.1). Then we have

MA ≃ F[x]/P1 ⊕ · · · ⊕ F[x]/Pr,

where Pi = (pi), pi|pi+1. This gives invariant subspace decomposition,

MA =
r⊕

i=1

Mi,

where Mi ≃ F[x]/Pi.
Let πi : MA −→ Mi be the projection, and πij : Mi −→ Mj be the natural projection for i > j.

Extend πij linearly to MA by assigning 0 on all Mk(k ̸= i). Then all πi and πij commute with A, thus
commute with B. Therefore, each Mi is A-invariant, thus it is also B-invariant. Let ei ∈ Mi be the element
corresponding to 1 + Pi ∈ F[x]/Pi.

We see that there is p(x) ∈ F[x] such that Ber = p(A)er. We claim that Bei = p(A)ei for all i < r, and
hence B = p(A).

Bei = Bπrier = πriBer = πrip(A)er = p(A)πrier = p(A)ei.

This completes the proof of our claim. □

Example 2.4. (Variation of Parameters and Inverse of Confluent Vandermonde Matrix)
Let p(x) = xn + an−1x

n−1 + · · · + a1x + a0 =
∏r

k=1(x − λk)
mk ∈ C[x] with λi ̸= λj for i ̸= j and

A = C(p)T . Consider the differential equation (*1)

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = b(x).

We may convert this to a system of differential equations (*2)

y′ = Ay + b(x)

where y = (y y′ · · · y(n−1))T and b(x) = (0 · · · 0 b(x))T = b(x)en.
We have A = V JV −1 where J = diag(J1, . . . , Jr) is Jordan form with Jk = JT (λk,mk) having 1 above

the main diagonal, and V is the confluent Vandermonde matrix V = (V1 · · · Vr) with Vk is n×mk matrix
with entries

(Vk)ij =

{(
i−1
j−1

)
λi−j
k if i ≥ j

0 otherwise.

Apply the matrix exponential to A = V JV −1, then we have etA = V etJV −1. Thus, etAV = V etJ . The
first row of V etJ is

(y1, · · · , yn)

=

(
etλ1 , etλ1t, · · · , etλ1

tm1−1

(m1 − 1)!
, · · · , etλr , etλr t · · · , etλr

tmr−1

(mr − 1)!

)
.

Let W (t) = etAV . Then by W ′(t) = AW (t), W (t) is the Wronskian matrix for the linearly independent
solutions y1, . . . , yn of the homogeneous part of (*1). We apply the Variation of Parameters to (*2), then
a particular solution has the form

y(t) = W (t)

∫ t

0
W−1(u)b(u)du = W (t)

∫ t

0
b(u)e−uJV −1en du.

To complete the Variation of Parameters to (*1), we take the first row (y1 · · · yn) of W (t) so that a
particular solution has the form

(y1 · · · yn)

∫ t

0
b(u)e−uJV −1en du.
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Here, V −1en is the last column of V −1. This (see [4]) is obtained by the partial fraction

1

p(x)
=

r∑
k=1

mk∑
j=1

Kk,j

(x− λk)j
.

Then V −1en = (K1,1 · · ·K1,m1 · · · Kr,1 · · ·Kr,mr)
T . Note that Kk,j = K

(0)
k,j can be computed from the

power series expansion of (x− λk)
mk/p(x) at x = λk.

The column n − j of V −1 is obtained from the column n − j + 1 recursively. For each k ≤ r, obtain

(K
(j)
k,1, · · · ,K

(j)
k,mk

) from (K
(j−1)
k,1 , · · · ,K(j−1)

k,mk
) by the following algorithm (see [4]):

• Apply the left shift to obtain (K
(j−1)
k,2 , · · · ,K(j−1)

k,mk
, 0),

• Add λk multiple of (K
(j−1)
k,1 , · · · ,K(j−1)

k,mk
),

• Add an−j multiple of (K
(0)
k,1, · · · ,K

(0)
k,mk

).

Then we have 
K

(j)
k,1
...

K
(j)
k,mk−1

K
(j)
k,mk

 =


K

(j−1)
k,2
...

K
(j−1)
k,mk

0

+ λk


K

(j−1)
k,1
...

K
(j−1)
k,mk−1

K
(j−1)
k,mk

+ an−j


K

(0)
k,1
...

K
(0)
k,mk−1

K
(0)
k,mk



=


K

(j−1)
k,2 + λkK

(j−1)
k,1 + an−jK

(0)
k,1

...

K
(j−1)
k,mk

+ λkK
(j−1)
k,mk−1 + an−jK

(0)
k,mk−1

λkK
(j−1)
k,mk

+ an−jK
(0)
k,mk

 .

To see why this algorithm works, apply Laplace transform to the homogeneous part of the equation (*1).

Let y = c1,jy1 + · · ·+ cn,jyn and Y = L(y). Since L(y(m)) = smY − sm−1y(0)− · · · − y(m−1)(0), we have

p(s)Y − (sn−1 + an−1s
n−2 + · · · · ·+ a1)y(0)

− (sn−2 + an−1s
n−3 + · · ·+ a2)y

′(0)

− · · · · · · · · ·

− (s+ an−1)y
(n−2)(0)

− y(n−1)(0) = 0.

If (y(0) y′(0) · · · y(n−1)(0))T = ej , we have

Y =
sn−j + an−1s

n−j−1 + · · ·+ aj
p(s)

.

Thus, L(y) = c1,jL(y1)+· · ·+cn,jL(yn) must be the partial fraction decomposition of
sn−j+an−1sn−j−1+···+aj

p(s) .

As W (0) = V and V (c1,j · · · cn,j)
T = ej , we obtain that (c1,j · · · cn,j)

T is j-th column of V −1.
For the recursive relation between consecutive columns, observe that for any root λ of p(s) = 0,

(s− λ+ λ)(sn−j + an−1s
n−j−1 + · · ·+ aj) + aj−1

p(s)
=

sn−j+1 + an−1s
n−j + · · ·+ ajs+ aj−1

p(s)
.

If λ-part of the partial fraction of
sn−j+an−1sn−j−1+···+aj

p(s) is

B1

s− λ
+

B2

(s− λ)2
+ · · ·+ Bm

(s− λ)m
,
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then λ-part of
sn−j+1+an−1sn−j+···+ajs+aj−1

p(s) is

B1+
B2 + λB1

s− λ
+

B3 + λB2

(s− λ)2
+ · · ·+ Bm + λBm−1

(s− λ)m−1
+

λBm

(s− λ)m

+
aj−1A1

s− λ
+ · · ·+ aj−1Am

(s− λ)m
,

where A1
s−λ + · · ·+ Am

(s−λ)m is λ-part of 1/p(s). The sum of the constant term B1’s over all λ’s is zero if j ≥ 2.

For, observe that it is the sum of all residues of
sn−j+an−1sn−j−1+···+aj

p(s) . Thus, its vanishing is shown by the

following limit of the integral over the circle CR of radius R centered at 0,

lim
R→∞

∫
CR

sn−j + an−1s
n−j−1 + · · ·+ aj
p(s)

ds = 0

Example 2.5. (Powers of a Matrix) Let mA(x) = xm+am−1x
m−1+· · ·+a1x+a0 =

∏r
k=1(x−λk)

mk ∈ C[x]
with λi ̸= λj for i ̸= j, be the minimal polynomial of A ∈ MN (C). Then for any n ≥ m, we write the
powers of A symbolically as follows:

An−m+1

An−m+2

...
An

 = MA


An−m

An−m+1

...
An−1

 = Mn−m+1
A


I
A
...

Am−1


where

MA = C(mA)
T =


0 1 · · · · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · · · · 1
−a0 −a1 · · · · · · −am−1

 .

By MA = V JV −1 where J = diag(J1, . . . , Jr) is Jordan form with Jk = JT (λk,mk) having 1 above the
main diagonal, and V is the confluent Vandermonde matrix V = (V1 · · · Vr) with Vk is m × mk matrix
with entries

(Vk)ij =

{(
i−1
j−1

)
λi−j
k if i ≥ j

0 otherwise.

We compute V −1 by the method of the previous example. The required powers of MA are computed by

Mn−m+1
A = V Jn−m+1V −1. Let (c

(n)
m,1, · · · , c

(n)
m,m) be the last row of Mn−m+1

A . Then

An = c
(n)
m,1I + c

(n)
m,2A+ · · ·+ c(n)m,mAm−1.

Thus, each entry of An is a linear combination of λn
kqk(n) with qk ∈ C[x] and deg qk(n) ≤ mk − 1.

Example 2.6. (Stochastic Matrix-Perron-Frobenius Theorem) Let A ∈ Mn(R) with nonnegative entries.
A is called a stochastic matrix if each column sums to 1. Then each row of AT sums to 1. The following
properties hold for AT .

• 1 is an eigenvalue of AT with an eigenvector 1 = (1 1 · · · 1)T .

• For each n ∈ N, (AT )n is has each row sum to 1.

Proof. This follows from (AT )n1 = 1. □

• If λ ∈ C is any eigenvalue of AT , then |λ| ≤ 1.
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Proof. To see this, let x = (x1 · · ·xn)T ∈ Cn be an eigenvector associated to an eigenvalue λ. Let xi be
the entry of x with the largest absolute value. Dividing by xi, we may assume that xi = 1 and |xj | ≤ 1 for
each j. Then i-th entry of Ax = λx gives (*)

a11x1 + · · ·+ ai1 + · · ·+ ainxn = λ

Then by Triangle Inequality and |xj | ≤ 1, it follows that

|λ| = |a11x1 + · · ·+ ai1 + · · ·+ ainxn| ≤ a11 + · · ·+ ain = 1.

□

The above proof is in fact similar to that of Gershgorin Theorem (Theorem 3.5).

• Any Jordan block JT (1,m) of AT corresponding to the eigenvalue 1, must satisfy m = 1.

Proof. Let X be an invertible matrix with AT = XJX−1 so that J is the Jordan form of AT . Observe
that (AT )n remains bounded as n ∈ N varies. Then X−1(AT )nX = Jn is also bounded. If J has a block
JT (1,m) with m ≥ 2, then Jn has polynomial entries in n and Jn fails to be bounded. □

A stochastic matrix is said to be positive if all entries are positive. If A ∈ Mn(R) is positive stochastic,
then the following properties hold for AT .

• Any eigenvalue λ of AT with |λ| = 1 must be λ = 1. The eigenspace corresponding to the eigenvalue
1 is 1-dimensional, hence it is spanned by 1.

Proof. If |λ| = 1, then inequality below must be an equality,

|λ| = |ai1x1 + · · ·+ ai1 + · · ·+ ainxn| ≤ ai1 + · · ·+ ain = 1.

Thus, positivity of A shows that |xj | = 1 for each j. Moreover, |ai1x1 + · · ·+ ai1 + · · ·+ ainxn| = 1 implies
that xj = 1 for each j. □

Since A and AT are similar, they have equivalent Jordan forms.
• lim

n→∞
An = (b · · · b) where entries of b ∈ Rn are positive and sum to 1.

Proof. Let v be a real eigenvector of A corresponding to the eigenvalue 1. Let Y be an invertible matrix
such that A = Y JY −1 with v the first column and J the Jordan form of A. Since any eigenvalue λ ̸= 1 of
AT has |λ| < 1 and the eigenvalue 1 has 1-dimensional eigenspace, A also satisfies those properties. Then
we see that Jn converges as n → ∞. In fact,

lim
n→∞

Jn =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .

Consequently,

lim
n→∞

An = Y


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

Y −1 =

 | 0 · · · 0

v
...

. . .
...

| 0 · · · 0

Y −1 = vwT

□

where wT ∈ M1×n(C) is the first row of Y −1. Since A is stochastic, so is vwT . Thus, there is b ∈ Rn with
nonnegative entries sum to 1 such that all columns of vwT are b. The vector b with nonnegative entries
must in fact have positive entries due to b = Ab.
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3. Spectral Theory

Definition 3.1. We say that a n× n complex matrix A is

• hermitian if A
T
= A,

• skew-hermitian if A
T
= −A,

• unitary if AA
T
= I,

• normal if AA
T
= A

T
A.

For simplicity, we write A
T

= A∗. Note that hermitian, skew-hermitian, and unitary matrices are
normal. The eigenvalues of hermitian matrices are all real, those of skew-hermitian matrices are all pure
imaginary, and those of unitary matrices are all on the unit circle.

Definition 3.2. For any vectors v, w ∈ Cn, the hermitian product of v and w is denoted by ⟨v, w⟩ and
defined by

⟨v, w⟩ = v∗w.

Theorem 3.1 (Common Eigenvector). Let A, B be n × n complex matrices such that AB = BA. Then
there is a nonzero vector v ∈ Cn which is an eigenvector for both A and B.

Proof. Let λ ∈ C be an eigenvalue of a matrix A and Vλ be the corresponding eigenspace. For any x ∈ Vλ,
we have

ABx = BAx = B(λx) = λBx.

This shows that Bx ∈ Vλ for any x ∈ Vλ. Thus, Vλ is invariant under B. Then let v ∈ Vλ be an eigenvector
of B restriced to Vλ. This is a common eigenvector of both A and B. □

Proposition 3.1. Let v be an common eigenvector of A and A∗ for a normal matrix A. If ⟨v, w⟩ = 0,
then ⟨v,Aw⟩ = 0.

Proof. Let A∗v = λv. Then ⟨v,Aw⟩ = ⟨A∗v, w⟩ = λ⟨v, w⟩ = 0. □

Theorem 3.2 (Spectral Theorem). Let A be an n× n normal matrix. Then there exists a unitary matrix
U and a diagonal matrix D such that A = UDU∗.

As a corollary, a hermitian matrix A is diagonalizable through a unitary matrix U and a real diagonal
matrix D. Denote by

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A)

the real eigenvalues of a hermitian matrix A.

Theorem 3.3 (Courant-Fischer). Let A be a hermitian matrix. Then

λi(A) = sup
dimV=i

inf
v∈V
|v|=1

v∗Av,

λi(A) = inf
dimV=n−i+1

sup
v∈V
|v|=1

v∗Av.

Proof. The second identity follows from the first by taking −A in the first one. To prove the first identity,
assume that the standard basis e1, . . . , en are the eigenvectors of A. Take V = span{e1, . . . , ei}. Then
dimV = i and

inf
v∈V
|v|=1

v∗Av = λi(A) ≤ sup
dimV=i

inf
v∈V
|v|=1

v∗Av.

For the reverse inequality, take any V with dimV = i and W = span{ei, . . . , en}. Then dim(V ∩W ) ≥ 1
by the dimension identity

dim(V ∩W ) = dimV + dimW − dim(V +W ).

We take a unit vector v ∈ V ∩W . Then v∗Av ≤ λi(A) since v ∈ W . Therefore, we have

inf
v∈V
|v|=1

v∗Av ≤ λi(A)
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since v ∈ V . Taking the supremum over dimV = i, we have the result. □

Corollary 3.1. If A and B are both hermitian matrices, then

|λi(A+B)− λi(A)| ≤ ∥B∥

where ∥B∥ is the operator norm of B.

Proof. We use v∗(A+B)v = v∗Av + v∗Bv. Let dimV = i. Find a unit vector v ∈ V such that

v∗Av = inf
v∈V
|v|=1

v∗Av.

Since v∗Av ≤ λi(A) and v∗Bv ≤ ∥B∥, we have

inf
v∈V
|v|=1

v∗(A+B)v ≤ λi(A) + ∥B∥

Taking the supremum over dimV = i, we have

λi(A+B) ≤ λi(A) + ∥B∥.

Similarly,

λi(A) ≤ λi(A− (−B)) + ∥ −B∥.

Then the result follows. □

Corollary 3.2 (Weyl’s Inequality). If A and B are both hermitian matrices, then

λi+j−1(A+B) ≤ λi(A) + λj(B)

whenever i, j ≥ 1 and i+ j − 1 ≤ n.

Proof. Let {v1, . . . , vn} be an orthonormal basis so that Avk = λk(A)vk for all k, and {w1, . . . , wn} be
an orthonormal basis so that Bwk = λk(B)wk for all k. Consider V = span{vi, . . . , vn} and W =
span{wj , . . . , wn}. Then dimV = n − i + 1, dimW = n − j + 1, and v∗Av ≤ λi(A) for all unit vec-
tor v ∈ V , w∗Bw ≤ λj(B) for all unit vector w ∈ W . By the dimension identity, we have

dim(V ∩W ) ≥ (n− i+ 1) + (n− j + 1)− n = n− (i+ j − 1) + 1.

Consider a subspace V ′ of V ∩W with dimV ′ = n− (i+ j − 1) + 1. For any unit vector v ∈ V ′, we have

v∗(A+B)v = v∗Av + v∗Bv ≤ λi(A) + λj(B).

Then by the second Courant-Fischer identity, the result follows. □

Definition 3.3. Let A ∈ Mn(C). The spectral radius of A is defined as

ρ(A) = max{|λ1|, . . . , |λn|}

where λ1, . . . , λn are eigenvalues of A.

If A is hermitian, we have ρ(A) = max{|λ1(A)|, |λn(A)|}.

Proposition 3.2. The spectral radius function is continuous. That is ρ : Mn(C) → R is continuous.

The proof relies on Rouche’s theorem.

Lemma 3.1 (Fekete). Let (an) be a subadditive real sequence, that is, an ∈ R for all n, and am+n ≤ am+an
for all m, n. Then lim(an/n) ∈ [−∞,∞) and

lim
n→∞

an
n

= inf
n∈N

an
n
.
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Proof. For any n ∈ N, we have an ≤ na1. Thus, the sequence (an/n) is bounded above. Let α =
lim sup(an/n) = limk→∞(ank

/nk) with increasing sequence of natural numbers (nk). Fix any m ∈ N. By
Euclidean Division Algorithm, we have nk = mqk + rk for some qk ∈ Z ∩ [0,∞) and 0 ≤ rk < m. Then
qk → ∞ as k → ∞. We have

ank

nk
=

amqk+rk

mqk + rk
≤ qkam + ark

mqk + rk
.

Taking k → ∞, we obtain α ≤ am/m. Thus, taking infimum over m, we have α ≤ inf(am/m). Hence, we
must have lim(an/n) = α.

□

Theorem 3.4. Let A ∈ Mn(C). The following hold
(1) ρ(A) < 1 if and only if limk→∞Ak = 0.

(2) For any k ∈ N, ρ(A) ≤
∥∥Ak

∥∥1/k.
(3) (Gelfand) ρ(A) = limk→∞

∥∥Ak
∥∥1/k.

Proof of (1). Note that limk→∞Ak = 0 if and only if limk→∞ Jk = 0 for any Jordan block of A. Also,
ρ(A) < 1 if and only if any eigenvalues λ of A satisfy |λ| < 1. Then (1) follows from

lim
k→∞

Jk = 0 if and only if J = J(λ, r) with |λ| < 1.

□

Proof of (2). Let Av = λv for some λ ∈ C and 0 ̸= v ∈ Cn. Then for any k ∈ N,

|λkv| = |Akv| ≤ ∥Ak∥|v|.
Then |λk| ≤ ∥Ak∥. This gives |λ| ≤ ∥Ak∥1/k.

□

Proof of (3). We have ∥AkAj∥ ≤ ∥Ak∥ · ∥Aj∥ for all k, j ≥ 0. If ∥Ak∥ = 0 for some k ∈ N, then we have

∥Ak+j∥ = 0 for all j ∈ N. Thus, we have limk→∞ ∥Ak∥1/k = 0. Assume ∥A∥k > 0 for all k ∈ N. Then by

Fekete’s lemma, the sequence ( 1k log ∥A
k∥)) converges. Thus, the sequence (∥Ak∥1/k) converges. Consider

the function f : {z ∈ C||z| > ρ(A)} → Mn(C) defined by f(z) = (zI − A)−1. This is a vector-valued
analytic function Laurant series is

1

z

1

1− (A/z)
=

1

z

∞∑
k=0

Ak

zk
.

The series cannot converge for any |z| < ρ(A), so its radius of convergence as a power series of w = 1/z is
ρ(A)−1. By Cauchy-Hadamard’s radius of convergence formula, we must have

ρ(A) = lim sup
k→∞

∥Ak∥1/k = lim
k→∞

∥Ak∥1/k.

□

Note that this proof works when A is a bounded linear operator on a Banach space (see [7]).
The locations of eigenvalues depending on the entries of matrices can be found in Gershgorin’s disk

theorem.

Theorem 3.5 (Gershgorin’s Disk Theorem). Let A ∈ Mn(C). For each i = 1, . . . , n, let Ri =
∑

j ̸=i |aij |.
Then the set of eigenvalues {λ1, . . . , λn} of A satisfies

{λ1, . . . , λn} ⊆ ∪n
i=1D(aii, Ri).

Proof. Let λ be an eigenvalue of A. Choose an eigenvector x with |xi| = max1≤j≤n |xj |. Then by dividing
xi, we may impose |xj | ≤ 1 for all j = 1, . . . , n, and xi = 1. Since Ax = λx, we have

λ = λxi =
∑
j

aijxj = aii +
∑
j ̸=i

aijxj .

By triangle inequality, it follows that
|λ− aii| ≤ Ri.
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Thus, we have the result. □

The eigenvalue inequalities can be improved in case the matrix A is hermitian.

Theorem 3.6. Let A ∈ Mn(C) be hermitian. Let cj be the j-th column of A with the j-th component is
set to zero. Then for each j = 1, . . . n, there is an eigenvalue λ of A such that |λ − ajj | ≤ ∥cj∥2 where
∥cj∥2 is ℓ2-norm of cj.

Proof. Let Ej = cje
T
j + ejcj

T , where ej is the standard basis vector. Then ajj is an eigenvalue of A− Ej .
Since A and A− Ej are both hermitian, their is an eigenvalue λ of A satisfies

|λ− ajj | ≤ ∥Ej∥ = ∥cj∥2
Thus, the result follows. □

This is a special case of Bauer-Fike theorem (see [9, Theorem 5.15]).
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