LINEAR ALGEBRA

KIM, SUNGJIN

1. Preliminary

Lemma 1.1 (Smith Normal Form). Let A be a nonzero $m \times n$ matrix over a principal ideal domain(PID) R. There exist invertible $m \times m$ and $n \times n$ matrices P, Q so that

$$
(1) \t\t P^{-1}AQ^{-1} = Diag(\alpha_1, \cdots, \alpha_r),
$$

where $\alpha_i \mid \alpha_{i+1}$ for $i < r$, here the last few terms can be 0.

The matrices P and Q may not be products of elementary matrices in general (see [1, p.23]). When the ring R is Euclidean, then it is possible to find P and Q through elementary row/column operations.

Lemma 1.2 (Structure Theorem over PID, Invariant factor decomposition). Every finitely generated module M over a PID R is isomorphic to a unique one of the form

$$
R^f \bigoplus \bigoplus_{i=1}^r R/(d_i),
$$

where $d_i | d_{i+1}$, and $d_i \neq (0)$. The summands are called the invariant factors.

Lemma 1.3 (Structure Theorem over PID, Primary decomposition). Conditions are the same as above, M is isomorphic to a unique one of the form

$$
(3) \t Rf \bigoplus \oplus_{i=1}^s R/(p_i^{r_i}),
$$

where p_i are prime ideals.

2. Theorems

We regard a left-multiplication of an $n \times n$ matrix A over a field \mathbb{F} as $\mathbb{F}[x]$ -module element, namely x. Then \mathbb{F}^n can be viewed as an $\mathbb{F}[x]$ -module with $p(x) \in \mathbb{F}[x]$ acting as $p(A) \in M_{n \times n}(\mathbb{F})$, denoted as M^A . Note that for any field F, the polynomial ring $\mathbb{F}[x]$ is an ED (Euclidean Domain), hence a PID. Our application of the structure theorem in invariant factor form is

Theorem 2.1 (Rational Canonical Form-Invariant factor form). Let A be a $n \times n$ matrix over a field \mathbb{F} . Then A is similar to a block diagonal matrix of the form

$$
(4) \t\t\t\t\oplus_{i=1}^r C(f_i),
$$

where $f_i | f_{i+1}$, and $C(f_i)$ is the companion matrix associated to f_i . This form is unique up to rearrangement of blocks.

Using primary decomposition, we have

Theorem 2.2 (Rational Canonical Form-Primary decomposition). Conditions are the same as above, A is similar to a block diagonal matrix of the form

$$
(5) \qquad \qquad \oplus_{i=1}^s C(p_i^{r_i}),
$$

where p_i are irreducible polynomials in $\mathbb{F}[x]$. This form is unique up to rearrangement of blocks.

For the proof, use structure theorem to the $\mathbb{F}[x]$ -module M^A as described above. If the ground field is algebraically closed, then we have Jordan Canonical Form.

Theorem 2.3 (Jordan Canonical Form). Let A be a $n \times n$ matrix over an algebraically closed field \mathbb{F} . Then A is similar to a block diagonal matrix of the form

$$
(6) \t\t\t\t\oplus_{i=1}^s J(\lambda_i,r_i),
$$

where λ_i are the eigenvalues of A, and $J(\lambda_i, r_i)$ is the Jordan block of diagonal λ_i and 1 directly below the main diagonal with size $r_i \times r_i$. This form is unique up to rearrangement of blocks.

Theorem 2.4 (Generalized Jordan Form). Let A be a $n \times n$ matrix over a field \mathbb{F} . Then A is similar to a block diagonal matrix of the form

 (7) ⊕ $_{i=1}^{s}J(p_{i},r_{i}),$

where p_i are the irreducible factors of the characteristic polynomial of A, and $J(p_i, r_i)$ is the generalized Jordan block of the form

with the matrix U whose sole nonzero entry 1 on the upper right corner, and r_i is the number of diagonal blocks. This form is unique up to rearrangement of blocks.

For the proof of Theorem 2.4, note that $J(p,r)$ is for the $\mathbb{F}[x]$ -module $\mathbb{F}[x]/(p^r)$. Consider the expression

$$
f(x) = a_0(x) + a_1(x)p(x) + \cdots + a_{r-1}(x)p(x)^{r-1} \in \mathbb{F}[x]/(p^r),
$$

where $a_i(x) \in \mathbb{F}[x]$, $\deg(a_i) < \deg(p)$.

Now, the problem reduces to determining invariant factors. We use Smith Normal Form to do this.

Theorem 2.5 (Invariant Factors). Let A be a $n \times n$ matrix over a field \mathbb{F} . Then invariant factors can be recovered from the Smith Normal Form of $xI - A$. More precisely, if $P^{-1}(xI - A)Q^{-1} = Diag(f_1, \dots, f_n)$ for some invertible matrices P,Q and $f_i \mid f_{i+1}$, then f_i are the invariant factors of A.

Here, first few terms can be 1. The proof starts from investigating the exact sequence

(8)
$$
0 \longrightarrow \mathbb{F}[x]^n \xrightarrow{xI-A} \mathbb{F}[x]^n \xrightarrow{\pi} M^A \longrightarrow 0.
$$

Then we see that

$$
M^A \simeq \mathbb{F}[x]^n / \text{Im}(xI - A).
$$

Corollary 2.1 (Similarity of Transpose). Let A be a $n \times n$ matrix over a field \mathbb{F} . Then A and its transpose A^T are similar.

Proof. Write $xI - A = PDQ$ where P, Q are invertible in $M_{n \times n}(\mathbb{F}[x])$ and the Smith Normal Form D. Taking transpose, we have

$$
xI - A^T = Q^T D^T P^T = Q^T D P^T.
$$

Since Q^T , P^T are also invertible, we see that $xI - A$ and $xI - A^T$ have the same invariant factors. \Box

Corollary 2.2 (Computation of Similarity Transform for Transpose). Let A be $n \times n$ matrix over a field **F**. Then we are able to compute the nonsingular similarity transform X such that $XA = A^T X$.

Proof. Let $xI - A = PDQ$ with intertible $P, Q \in M_{n \times n}(\mathbb{F}[x])$ and D be the Smith Normal Form of A. Note that the computation of Smith Normal Form is essentially elementary row/column operations. Thus, we keep track of row/column operations on $xI - A$, and P is obtained by a product of inverses of elementary matrices corresponding to the row operations, Q by a product of those inverses of column operations.

Then $xI - A = PDQ$ and $xI - A^{T} = Q^{T}DP^{T}$ yield an $\mathbb{F}[x]$ -module isomorphism

$$
\mathbb{F}[x]^n / \text{Im}(xI - A) \xrightarrow{Q^T P^{-1}} \mathbb{F}[x]^n / \text{Im}(xI - A^T).
$$

We may regard the module isomorphism as a vector-space isomorphism between M^A and M^{A^T} . This isomorphism is obtained by writing $Q^T P^{-1} \in M_{n \times n}(\mathbb{F}[x])$ with x replaced by the left multiplication of A^T .

LINEAR ALGEBRA 3

Write the resulting matrix as X . Then X is nonsingular since it is an isomorphism between *n*-dimensional vector spaces. Since $Q^T P^{-1}$ is an $\mathbb{F}[x]$ -module isomorphism, it commutes with the action of x. Since the action of x in M^A is the left multiplication of A, and that in M^{A^T} is the left multiplication of A^T , we have $XA = A^T X$.

Note that this method can be applied in finding a similarity transform to any given two similar matrices.

Example 2.1. Let $A = \begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix}$. Then the elementary row/column operations on $xI - A$ yield the Smith Normal Form

$$
P^{-1}(xI - A)Q^{-1} = \begin{pmatrix} 1 & & \\ & x^2 - 9x - 1 \end{pmatrix}.
$$

Here, we have

$$
P = \begin{pmatrix} -3 \\ x-7 & 1 \end{pmatrix}, \quad Q = \begin{pmatrix} -\frac{x-2}{3} & 1 \\ \frac{1}{3} & \end{pmatrix}.
$$

Then,

$$
Q^T P^{-1} = \begin{pmatrix} \frac{2x-9}{9} & \frac{1}{3} \\ -\frac{1}{3} & \end{pmatrix} = x \begin{pmatrix} \frac{2}{9} \\ \frac{1}{3} \end{pmatrix} + \begin{pmatrix} -1 & \frac{1}{3} \\ -\frac{1}{3} & \end{pmatrix}.
$$

This gives the nonsingular matrix X ,

$$
X = \begin{pmatrix} 2 & 5 \\ 3 & 7 \end{pmatrix} \begin{pmatrix} \frac{2}{9} \\ 0 & \end{pmatrix} + \begin{pmatrix} -1 & \frac{1}{3} \\ -\frac{1}{3} \end{pmatrix} = \begin{pmatrix} -\frac{5}{9} & \frac{1}{3} \\ \frac{1}{3} & \end{pmatrix}.
$$

For this X , we have

$$
XA = \begin{pmatrix} \frac{5}{9} & \frac{2}{3} \\ \frac{2}{3} & 1 \end{pmatrix} = A^T X.
$$

Note that in this method, we do not need to fully produce a Smith Normal Form for A. We just need a diagonal D in the elementary row/column operations. This makes the calculation of P and Q simpler. With this simpler procedure, we have the following general result.

Example 2.2. In general, let
$$
A = \begin{pmatrix} a & b \ c & d \end{pmatrix}
$$
. If $b \neq 0$,
\n
$$
\begin{pmatrix} 1 \ 1 \end{pmatrix} \begin{pmatrix} 1 \ \frac{x-d}{b} \end{pmatrix} \begin{pmatrix} x-a & -b \ -c & x-d \end{pmatrix} \begin{pmatrix} 1 \ \frac{x-a}{b} \end{pmatrix} = \begin{pmatrix} -c + \frac{(x-a)(x-d)}{b} \ -b \end{pmatrix}
$$
\nWith $P^{-1} = \begin{pmatrix} 1 \ 1 \end{pmatrix} \begin{pmatrix} 1 \ \frac{x-d}{b} \end{pmatrix}$ and $Q = \begin{pmatrix} 1 \ -\frac{x-a}{b} \end{pmatrix}$, we have $Q^T P^{-1} = \begin{pmatrix} \frac{a-d}{b} & 1 \ 1 & 1 \end{pmatrix}$.
\nCase 1: $b \neq 0$, we can take $X = \begin{pmatrix} \frac{a-d}{b} & 1 \ 1 & 1 \end{pmatrix}$. Then $XA = A^T X$.
\nCase 2: $b = 0$, $c \neq 0$, then we take $X = \begin{pmatrix} \frac{a-d}{c} & 1 \ 1 & 1 \end{pmatrix}$. Then $XA^T = AX$.
\nCase 3: $b = c = 0$, then A is diagonal, and $X = I$ works.

Corollary 2.3 (Similarity Preserved by Field Extension). Let A and B be $n \times n$ matrices over a field K. Let L be a field extension of K. Then A and B are similar over K if and only if they are similar over L.

Proof. \Rightarrow) is obvious.

 \Leftarrow) Let $\{A_i\}$ be the complete set of invariant factors of A, and $\{B_i\}$ that of B. Then we have

$$
L \otimes_K (\oplus_i K[x]/(A_i)) = \oplus_i L[x]/(A_i),
$$

and

$$
L \otimes_K (\oplus_i K[x]/(B_i)) = \oplus_i L[x]/(B_i).
$$

Since A and B are similar over L , we see that the RHS of the above formulas should be equal. Hence the sets of invariant factors $\{A_i\}$ and $\{B_i\}$ are identical, yielding that A and B are similar over K. \Box

.

Theorem 2.6 (Centralizer of a Matrix). Let A be a $n \times n$ matrix over F. Let $C_A = \{B \in M_{n \times n}(\mathbb{F}) \mid AB = 1\}$ BA}. Then the minimal dimension of C_A over $\mathbb F$ is n, and this is obtained precisely when the minimal polynomial and characteristic polynomial of A coincide.

The idea of proof is interpreting C_A as an $\mathbb{F}[x]$ -endomorphism algebra of the $\mathbb{F}[x]$ -module M^A (as described above). We use the Rational Canonical Form-Primary decomposition $M^A = \bigoplus$ p $\bigoplus_i \mathbb{F}[x]/(p^{\lambda_{p,i}}).$

Then C_A can be written as

$$
C_A \simeq \text{ End}_{\mathbb{F}[x]} M^A \simeq \bigoplus_{p} \bigoplus_{i,j} \text{Hom}_{\mathbb{F}[x]} (\mathbb{F}[x]/(p^{\lambda_{p,i}}), \mathbb{F}[x]/(p^{\lambda_{p,j}})).
$$

where the first sum is over all irreducible polynomials p that divides the characteristic polynomial of A , and the indices *i*, *j* of second double sum is from the partition $\lambda_p = \sum_i \lambda_{p,i}$ that indicates the powers of *p* in p-primary part of M^A . We then have the formula for $\dim_{\mathbb{F}} C_A$

(9)
$$
\dim_{\mathbb{F}} C_A = \dim_{\mathbb{F}} \operatorname{End}_{\mathbb{F}[x]} M^A = \sum_p (\deg p) \sum_{i,j} \min \{ \lambda_{p,i}, \lambda_{p,j} \}.
$$

The result we have on $\dim_{\mathbb{F}} C_A$ is a special case of Cecioni-Frobenius Theorem.

Theorem 2.7 (Cecioni-Frobenius). Let A be a $m \times m$ matrix, B be a $n \times n$ matrix over F. Denote by $\nu_{A,B}$ the dimension of $C_{A,B}$ over $\mathbb F$ where

$$
C_{A,B} = \{ X \in M_{m \times n}(\mathbb{F}) \mid AX - XB = 0 \}.
$$

Then we have $\nu_{A,B} = \sum_p (\deg p) \sum_{i,j} \min\{\lambda_{p,i}, \mu_{p,j}\}.$

Here the first sum is over all irreducible polynomials p which are common in the primary decompositions of M^A and M^B , and the indices i, j of second double sum is from the partition $\lambda_p = \sum_i \lambda_{p,i}$ that indicates the powers of p in p-primary part of M^A , $\mu_p = \sum_j \mu_{p,j}$ that of powers of p in p-primary part of M^B .

Proof. Note that $C_{A,B} = \text{Hom}_{\mathbb{F}[x]}(M^B, M^A)$. Then

$$
\nu_{A,B} = \dim_{\mathbb{F}} C_{A,B} = \dim_{\mathbb{F}} \text{Hom}_{\mathbb{F}[x]}(M^B, M^A) = \sum_p (\deg p) \sum_{i,j} \min\{\lambda_{p,i}, \mu_{p,j}\}.
$$

An obvious application of Cecioni-Frobenius Theorem is

Theorem 2.8 (Sylvester Equation). Let A be a $m \times m$ matrix, B be a $n \times n$ matrix, and C be a $m \times n$ matrix over $\mathbb F$. Consider a matrix equation $AX - XB = C$. Then

• The matrix equation $AX - XB = C$ has a unique solution if and only if primary decompositions of M^A and M^B have no common irreducible polynomial.

• In case the equation does not have a unique solution, we have

$$
\nu_{A,B} = \dim_{\mathbb{F}} C_{A,B} = \dim_{\mathbb{F}} \{ X \in M_{m \times n}(\mathbb{F}) \mid AX - XB = 0 \} > 0.
$$

We present a method for determining similarity of two matrices without module theory.

Definition 2.1 (Kronecker Product). Let $A \in M_m(\mathbb{F})$, $B \in M_n(\mathbb{F})$. The Kronecker Product of the matrices A and B is defined by

$$
A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1m}B \\ a_{21}B & a_{22}B & \cdots & a_{2m}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mm}B \end{pmatrix}
$$

.

Let $C \in M_{m \times n}(\mathbb{F})$. The vectorization of matrix C is written as vec(C). This is a column vector in \mathbb{F}^{mn} composed of columns of C.

Lemma 2.1. Let $A \in M_m(\mathbb{F})$, $B \in M_n(\mathbb{F})$, and $X \in M_{m \times n}(\mathbb{F})$. Then $vec(AXB) = (B^T \otimes A)vec(X).$

□

By this lemma, Sylvester equation $AX - XB = C$ can be written as a linear system of mn variables.

$$
(I_n \otimes A - B^T \otimes I_m)\text{vec}(X) = \text{vec}(C).
$$

Then we have $\nu_{A,B} = \text{Null}(I_n \otimes A - B^T \otimes I_m).$

Theorem 2.9 (Byrnes-Gauger). Let $A \in M_m(\mathbb{F})$, $B \in M_n(\mathbb{F})$. Then we have

$$
\nu_{A,A} + \nu_{B,B} - 2\nu_{A,B} \ge 0.
$$

The equality holds if and only if $m = n$ and the matrices A, B are similar.

Proof. This is a consequence of the following combinatorial inequality.

Let $m_1 \leq m_2 \leq \cdots \leq m_r$, $n_1 \leq n_2 \leq \cdots \leq n_s$ be integers. Then

$$
\sum_{i,j} (\min(m_i, m_j) + \min(n_i, n_j) - 2\min(m_i, n_j)) \ge 0
$$

with equality holds if and only if (m_i) and (n_j) are identical.

This inequality follows from considering the diagonal and off-diagonal pairs. Case 1: $i = j$

We have $m_i + n_i - 2\min(m_i, n_i) \ge 0$ with equality holds if and only if $m_i = n_i$ for all i.

Case 2: The off-diagonal pairs (i, j) and (j, i) where $i < j$.

Subcase 2-1: The intervals $[m_i, m_j]$ and $[n_i, n_j]$ do not overlap. Without loss of generality, assume $m_j < n_i$. We have $m_i + n_i - 2m_i + m_i + n_i - 2m_j = 2n_i - 2m_j > 0$.

Subcase 2-2: The intervals $[m_i, m_j]$ and $[n_i, n_j]$ overlap. Without loss of generality, assume $m_i \leq n_i \leq m_j$. We have $m_i + n_i - 2m_i + m_i + n_i - 2n_i = 0$.

Thus, the off-diagonal pairs' contribution are always nonnegative. Considering diagonal contributions, it is easy to see that the equality holds if and only if the sequences are identical. \Box

The following criteria for similarity can be checked through elementary row operations on $n^2 \times n^2$ matrices.

Corollary 2.4. Let $A, B \in M_n(\mathbb{F})$. Then A and B are similar if and only if $\nu_{A,A} = \nu_{B,B} = \nu_{A,B}$. That is, $\mathrm{Null}(I_n \otimes A - A^T \otimes I_n) = \mathrm{Null}(I_n \otimes B - B^T \otimes I_n) = \mathrm{Null}(I_n \otimes A - B^T \otimes I_n).$

Since A^T and A are similar, we also have by rank-nullity theorem,

Corollary 2.5. Let $A, B \in M_n(\mathbb{F})$. Then A and B are similar if and only if

$$
\mathrm{rk}(I_n \otimes A - A \otimes I_n) = \mathrm{rk}(I_n \otimes B - B \otimes I_n) = \mathrm{rk}(I_n \otimes A - B \otimes I_n).
$$

Theorem 2.10 (Symmetric Similarity Transform, [11]). Let A be a $n \times n$ matrix over F. Suppose also that the minimal polynomial and characteristic polynomial of A coincide. Then any invertible matrix X satisfying $XA = A^T X$ is symmetric.

Proof. Consider the following system (Σ_A) of matrix equations.

$$
(10)\t\t\t XA = A^T X,
$$

$$
X = X^T.
$$

Note that the below system is equivalent to (Σ_A) .

$$
(12)\t\t\t XA = A^T X^T,
$$

$$
(13) \t\t X = X^T.
$$

The linear transform $X \mapsto (XA - A^T X^T, X - X^T)$ has rank at most $n^2 - n$. Thus, the solution space of the system (Σ_A) has dimension at least n.

Now, fix a non-singular transform X_0 such that $X_0A = A^T X_0$. Then

 $XA = A^T X$ if and only if $X_0^{-1} X A = A X_0^{-1} X$.

This yields an isomorphism $X \mapsto X_0^{-1}X$ between $\{X \mid XA = A^TX\}$ and $C_A = \{X' \mid X'A = AX'\}$. Since $\dim_{\mathbb{F}} C_A = n$, the solution space for (10) has dimension n. Since the solution space for (Σ_A) has dimension $\geq n$, the dimension must be exactly n. Hence, every matrix X satisfying (10) must also satisfy (11). \Box

Note that by Cecioni-Frobenius, it is clear that $C_{A^T,A}$ and C_A has the same dimension. There is no need for constructing isomorphism.

For the companion matrix, we have an explicit similarity transform (see [2, Proposition 5.4] and [8]).

Example 2.3. (Similarity Transform for Companion Matrices)

Let $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in \mathbb{F}[x]$ and

$$
C(p) = \begin{pmatrix} 0 & 0 & \cdots & -a_0 \\ 1 & 0 & \cdots & -a_1 \\ 0 & 1 & \cdots & -a_2 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -a_{n-1} \end{pmatrix}
$$

be the companion matrix. Then we have

$$
C(p)Y = YC(p)^{T} = \begin{pmatrix} -a_0 & 0 & 0 & \cdots & \cdots & 0 \\ 0 & a_2 & a_3 & \cdots & a_{n-1} & 1 \\ 0 & a_3 & & \cdots & 1 \\ \vdots & \vdots & & \ddots & \vdots \\ a_{n-1} & 1 & & & \end{pmatrix}
$$

where

$$
Y = \begin{pmatrix} a_1 & a_2 & \cdots & a_{n-2} & a_{n-1} & 1 \\ a_2 & a_3 & \cdots & a_{n-1} & 1 \\ a_3 & a_4 & \cdots & 1 & \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n-1} & 1 & & & \end{pmatrix}
$$

.

Theorem 2.11 (Symmetric Similarity Transform 2). Let A be a $n \times n$ matrix over a field \mathbb{F} . Then there exists an invertible symmetric matrix X such that $XA = A^T X$.

Proof. Let X_0 be an invertible matrix over $\mathbb F$ such that $A = X_0^{-1} J X_0$ with J is consisted of blocks on diagonal, each block is a companion matrix of p^s for some irreducible polynomial p and $s \geq 1$. Say, $J = diag\{C_1, \ldots, C_r\}$. Now, we may have distinct blocks in J corresponding to the same irreducible polynomial. Consider

$$
XA = A^T X \Longleftrightarrow X_0^{-T} X X_0^{-1} J = J^T X_0^{-T} X X_0^{-1},
$$

where I used the notation $X_0^{-T} = (X_0^{-1})^T$.

By Theorem 2.10 or Example 2.3, we can find a symmetric invertible matrix corresponding to each companion matrix in J. Put $X_0^{-T}XX_0^{-1} = \text{diag}\{Y_1,\ldots,Y_r\}$ such that $Y_iC_i = C_i^TY_i$ and Y_i is symmetric invertible and of the same size with C_i for each $1 \leq i \leq r$.

Then we can put a symmetric invertible matrix

$$
X = X_0^T \text{diag}\{Y_1, \ldots, Y_r\} X_0,
$$

which satisfies $XA = A^T X$.

Note that an invertible X with $XA = A^T X$ may not be symmetric if the characteristic polynomial and minimal polynomial of A do not coincide.

Theorem 2.12 (Double Commutant Theorem, [5]). Let A, B be $n \times n$ matrix over a field \mathbb{F} such that any matrix that commutes with A also commutes with B. Then $B = p(A)$ for some $p \in \mathbb{F}[x]$.

Proof. We use rational canonical form-invariant factor form (Theorem 2.1). Then we have

$$
M^A \simeq \mathbb{F}[x]/P_1 \oplus \cdots \oplus \mathbb{F}[x]/P_r,
$$

where $P_i = (p_i)$, $p_i | p_{i+1}$. This gives invariant subspace decomposition,

$$
M^A = \bigoplus_{i=1}^r M_i,
$$

where $M_i \simeq \mathbb{F}[x]/P_i$.

Let $\pi_i: M^A \longrightarrow M_i$ be the projection, and $\pi_{ij}: M_i \longrightarrow M_j$ be the natural projection for $i > j$. Extend π_{ij} linearly to M^A by assigning 0 on all $M_k(k \neq i)$. Then all π_i and π_{ij} commute with A, thus commute with B. Therefore, each M_i is A-invariant, thus it is also B-invariant. Let $e_i \in M_i$ be the element corresponding to $1 + P_i \in \mathbb{F}[x]/P_i$.

We see that there is $p(x) \in \mathbb{F}[x]$ such that $Be_r = p(A)e_r$. We claim that $Be_i = p(A)e_i$ for all $i < r$, and hence $B = p(A)$.

$$
Be_i = B\pi_{ri}e_r = \pi_{ri}Be_r = \pi_{ri}p(A)e_r = p(A)\pi_{ri}e_r = p(A)e_i.
$$

This completes the proof of our claim. □

Example 2.4. (Variation of Parameters and Inverse of Confluent Vandermonde Matrix)

Let $p(x) = x^{n} + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 = \prod_{k=1}^{r} (x - \lambda_k)^{m_k} \in \mathbb{C}[x]$ with $\lambda_i \neq \lambda_j$ for $i \neq j$ and $A = C(p)^T$. Consider the differential equation (*1)

$$
y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_1y' + a_0y = b(x).
$$

We may convert this to a system of differential equations (*2)

 $y' = Ay + b(x)$

where $\mathbf{y} = (y \ y' \ \cdots \ y^{(n-1)})^T$ and $\mathbf{b}(x) = (0 \ \cdots \ 0 \ b(x))^T = b(x)\mathbf{e_n}$.

We have $A = VJV^{-1}$ where $J = diag(J_1, \ldots, J_r)$ is Jordan form with $J_k = J^T(\lambda_k, m_k)$ having 1 above the main diagonal, and V is the confluent Vandermonde matrix $V = (V_1 \cdots V_r)$ with V_k is $n \times m_k$ matrix with entries

$$
(V_k)_{ij} = \begin{cases} \binom{i-1}{j-1} \lambda_k^{i-j} & \text{if } i \ge j \\ 0 & \text{otherwise.} \end{cases}
$$

Apply the matrix exponential to $A = VJV^{-1}$, then we have $e^{tA} = Ve^{tJ}V^{-1}$. Thus, $e^{tAV} = Ve^{tJ}$. The first row of Ve^{tJ} is

$$
(y_1, \cdots, y_n)
$$

= $\left(e^{t\lambda_1}, e^{t\lambda_1}t, \cdots, e^{t\lambda_1}\frac{t^{m_1-1}}{(m_1-1)!}, \cdots, e^{t\lambda_r}, e^{t\lambda_r}t \cdots, e^{t\lambda_r}\frac{t^{m_r-1}}{(m_r-1)!}\right).$

Let $W(t) = e^{tA}V$. Then by $W'(t) = AW(t)$, $W(t)$ is the Wronskian matrix for the linearly independent solutions y_1, \ldots, y_n of the homogeneous part of (*1). We apply the Variation of Parameters to (*2), then a particular solution has the form

$$
\mathbf{y}(t) = W(t) \int_0^t W^{-1}(u) \mathbf{b}(u) du = W(t) \int_0^t b(u) e^{-u} V^{-1} \mathbf{e}_n \ du.
$$

To complete the Variation of Parameters to $(*1)$, we take the first row $(y_1 \cdots y_n)$ of $W(t)$ so that a particular solution has the form

$$
(y_1 \cdots y_n) \int_0^t b(u) e^{-u} V^{-1} \mathbf{e_n} du.
$$

Here, V^{-1} **e**_n is the last column of V^{-1} . This (see [4]) is obtained by the partial fraction

$$
\frac{1}{p(x)} = \sum_{k=1}^{r} \sum_{j=1}^{m_k} \frac{K_{k,j}}{(x - \lambda_k)^j}.
$$

Then $V^{-1}\mathbf{e_n} = (K_{1,1}\cdots K_{1,m_1} \cdots K_{r,1}\cdots K_{r,m_r})^T$. Note that $K_{k,j} = K_{k,j}^{(0)}$ can be computed from the power series expansion of $(x - \lambda_k)^{m_k}/p(x)$ at $x = \lambda_k$.

The column $n - j$ of V^{-1} is obtained from the column $n - j + 1$ recursively. For each $k \leq r$, obtain $(K_{k-1}^{(j)}$ $K_{k,1}^{(j)},\cdots,K_{k,m_k}^{(j)}$ from $(K_{k,1}^{(j-1)})$ $(k,1^{(j-1)}, \dots, K_{k,m_k}^{(j-1)})$ by the following algorithm (see [4]):

- Apply the left shift to obtain $(K_{k}^{(j-1)})$ $k, (j-1), \cdots, K_{k,m_k}^{(j-1)}, 0),$
- Add λ_k multiple of $(K_{k,1}^{(j-1)})$ $k, 1^{(j-1)}, \cdots, K_{k,m_k}^{(j-1)}),$
- Add a_{n-j} multiple of $(K_{k,1}^{(0)})$ $k_{k,1}^{(0)}, \cdots, K_{k,m_k}^{(0)}$).

Then we have

$$
\begin{pmatrix}\nK_{k,1}^{(j)} \\
\vdots \\
K_{k,m_k-1}^{(j)} \\
K_{k,m_k}^{(j)}\n\end{pmatrix} = \begin{pmatrix}\nK_{k,2}^{(j-1)} \\
\vdots \\
K_{k,m_k}^{(j-1)} \\
0\n\end{pmatrix} + \lambda_k \begin{pmatrix}\nK_{k,1}^{(j-1)} \\
\vdots \\
K_{k,m_k-1}^{(j-1)} \\
K_{k,m_k}^{(j-1)}\n\end{pmatrix} + a_{n-j} \begin{pmatrix}\nK_{k,1}^{(0)} \\
\vdots \\
K_{k,m_k-1}^{(0)} \\
K_{k,m_k}^{(0)}\n\end{pmatrix}
$$
\n
$$
= \begin{pmatrix}\nK_{k,2}^{(j-1)} + \lambda_k K_{k,1}^{(j-1)} + a_{n-j} K_{k,1}^{(0)} \\
\vdots \\
K_{k,m_k}^{(j-1)} + \lambda_k K_{k,m_k-1}^{(j-1)} + a_{n-j} K_{k,m_k-1}^{(0)} \\
\lambda_k K_{k,m_k}^{(j-1)} + a_{n-j} K_{k,m_k}^{(0)}\n\end{pmatrix}.
$$

To see why this algorithm works, apply Laplace transform to the homogeneous part of the equation (*1). Let $y = c_{1,j}y_1 + \cdots + c_{n,j}y_n$ and $Y = \mathcal{L}(y)$. Since $\mathcal{L}(y^{(m)}) = s^mY - s^{m-1}y(0) - \cdots - y^{(m-1)}(0)$, we have

$$
p(s)Y - (s^{n-1} + a_{n-1}s^{n-2} + \cdots + a_1)y(0)
$$

$$
- (s^{n-2} + a_{n-1}s^{n-3} + \cdots + a_2)y'(0)
$$

$$
- \cdots \cdots \cdots
$$

$$
- (s + a_{n-1})y^{(n-2)}(0)
$$

$$
- y^{(n-1)}(0) = 0.
$$

If $(y(0) y'(0) \cdots y^{(n-1)}(0))^T = e_j$, we have

$$
Y = \frac{s^{n-j} + a_{n-1}s^{n-j-1} + \dots + a_j}{p(s)}.
$$

Thus, $\mathcal{L}(y) = c_{1,j}\mathcal{L}(y_1) + \cdots + c_{n,j}\mathcal{L}(y_n)$ must be the partial fraction decomposition of $\frac{s^{n-j}+a_{n-1}s^{n-j-1}+\cdots+a_j}{p(s)}$ $\frac{s^{n} s^{n} + \cdots + a_j}{p(s)}$. As $W(0) = V$ and $V(c_{1,j} \cdots c_{n,j})^T = \mathbf{e}_j$, we obtain that $(c_{1,j} \cdots c_{n,j})^T$ is j-th column of V^{-1} . For the recursive relation between consecutive columns, observe that for any root λ of $p(s) = 0$,

$$
\frac{(s-\lambda+\lambda)(s^{n-j}+a_{n-1}s^{n-j-1}+\cdots+a_j)+a_{j-1}}{p(s)}=\frac{s^{n-j+1}+a_{n-1}s^{n-j}+\cdots+a_js+a_{j-1}}{p(s)}.
$$

If λ -part of the partial fraction of $\frac{s^{n-j}+a_{n-1}s^{n-j-1}+\cdots+a_j}{n(s)}$ $\frac{s}{p(s)}$ +…+a_j is

$$
\frac{B_1}{s-\lambda}+\frac{B_2}{(s-\lambda)^2}+\cdots+\frac{B_m}{(s-\lambda)^m},
$$

then λ -part of $\frac{s^{n-j+1}+a_{n-1}s^{n-j}+\cdots+a_js+a_{j-1}}{n(s)}$ $\frac{m}{p(s)}$ is $\frac{m}{p(s)}$

$$
B_1 + \frac{B_2 + \lambda B_1}{s - \lambda} + \frac{B_3 + \lambda B_2}{(s - \lambda)^2} + \dots + \frac{B_m + \lambda B_{m-1}}{(s - \lambda)^{m-1}} + \frac{\lambda B_m}{(s - \lambda)^m} + \frac{a_{j-1}A_1}{s - \lambda} + \dots + \frac{a_{j-1}A_m}{(s - \lambda)^m},
$$

where $\frac{A_1}{s-\lambda}+\cdots+\frac{A_m}{(s-\lambda)^m}$ is λ -part of $1/p(s)$. The sum of the constant term B_1 's over all λ 's is zero if $j\geq 2$. For, observe that it is the sum of all residues of $\frac{s^{n-j}+a_{n-1}s^{n-j-1}+\cdots+a_j}{n(s)}$ $\frac{s}{p(s)}$ + \cdots + a_j . Thus, its vanishing is shown by the following limit of the integral over the circle C_R of radius R centered at 0,

$$
\lim_{R \to \infty} \int_{C_R} \frac{s^{n-j} + a_{n-1} s^{n-j-1} + \dots + a_j}{p(s)} ds = 0
$$

Example 2.5. (Powers of a Matrix) Let $m_A(x) = x^m + a_{m-1}x^{m-1} + \cdots + a_1x + a_0 = \prod_{k=1}^r (x - \lambda_k)^{m_k} \in \mathbb{C}[x]$ with $\lambda_i \neq \lambda_j$ for $i \neq j$, be the minimal polynomial of $A \in M_N(\mathbb{C})$. Then for any $n \geq m$, we write the powers of A symbolically as follows:

$$
\begin{pmatrix} A^{n-m+1} \\ A^{n-m+2} \\ \vdots \\ A^{n} \end{pmatrix} = M_A \begin{pmatrix} A^{n-m} \\ A^{n-m+1} \\ \vdots \\ A^{n-1} \end{pmatrix} = M_A^{n-m+1} \begin{pmatrix} I \\ A \\ \vdots \\ A^{m-1} \end{pmatrix}
$$

where

$$
M_A = C(m_A)^T = \begin{pmatrix} 0 & 1 & \cdots & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \cdots & 1 \\ -a_0 & -a_1 & \cdots & \cdots & -a_{m-1} \end{pmatrix}.
$$

By $M_A = VJV^{-1}$ where $J = diag(J_1, \ldots, J_r)$ is Jordan form with $J_k = J^T(\lambda_k, m_k)$ having 1 above the main diagonal, and V is the confluent Vandermonde matrix $V = (V_1 \cdots V_r)$ with V_k is $m \times m_k$ matrix with entries

$$
(V_k)_{ij} = \begin{cases} \binom{i-1}{j-1} \lambda_k^{i-j} & \text{if } i \ge j \\ 0 & \text{otherwise.} \end{cases}
$$

We compute V^{-1} by the method of the previous example. The required powers of M_A are computed by $M_A^{n-m+1} = V J^{n-m+1} V^{-1}$. Let $(c_{m,1}^{(n)})$ $\binom{n}{m,1},\cdots,\binom{n}{m,m}$ be the last row of M_A^{n-m+1} . Then

$$
A^{n} = c_{m,1}^{(n)}I + c_{m,2}^{(n)}A + \cdots + c_{m,m}^{(n)}A^{m-1}.
$$

Thus, each entry of A^n is a linear combination of $\lambda_k^n q_k(n)$ with $q_k \in \mathbb{C}[x]$ and $\deg q_k(n) \leq m_k - 1$.

Example 2.6. (Stochastic Matrix-Perron-Frobenius Theorem) Let $A \in M_n(\mathbb{R})$ with nonnegative entries. A is called a *stochastic matrix* if each column sums to 1. Then each row of A^T sums to 1. The following properties hold for A^T .

- 1 is an eigenvalue of A^T with an eigenvector $\mathbf{1} = (1 \ 1 \cdots 1)^{T}$.
- For each $n \in \mathbb{N}$, $(A^T)^n$ is has each row sum to 1.

Proof. This follows from (A^T) $n_1 = 1.$

• If $\lambda \in \mathbb{C}$ is any eigenvalue of A^T , then $|\lambda| \leq 1$.

Proof. To see this, let $x = (x_1 \cdots x_n)^T \in \mathbb{C}^n$ be an eigenvector associated to an eigenvalue λ . Let x_i be the entry of x with the largest absolute value. Dividing by x_i , we may assume that $x_i = 1$ and $|x_j| \leq 1$ for each j. Then *i*-th entry of $Ax = \lambda x$ gives (*)

$$
a_{11}x_1 + \dots + a_{i1} + \dots + a_{in}x_n = \lambda
$$

Then by Triangle Inequality and $|x_j| \leq 1$, it follows that

$$
|\lambda| = |a_{11}x_1 + \dots + a_{i1} + \dots + a_{in}x_n| \le a_{11} + \dots + a_{in} = 1.
$$

The above proof is in fact similar to that of Gershgorin Theorem (Theorem 3.5).

• Any Jordan block $J^T(1,m)$ of A^T corresponding to the eigenvalue 1, must satisfy $m=1$.

Proof. Let X be an invertible matrix with $A^T = XJX⁻¹$ so that J is the Jordan form of A^T . Observe that $(A^T)^n$ remains bounded as $n \in \mathbb{N}$ varies. Then $X^{-1}(A^T)^n X = J^n$ is also bounded. If J has a block $J^T(1,m)$ with $m \geq 2$, then J^n has polynomial entries in n and J^n fails to be bounded.

A stochastic matrix is said to be *positive* if all entries are positive. If $A \in M_n(\mathbb{R})$ is positive stochastic, then the following properties hold for A^T .

• Any eigenvalue λ of A^T with $|\lambda|=1$ must be $\lambda=1$. The eigenspace corresponding to the eigenvalue 1 is 1-dimensional, hence it is spanned by 1.

Proof. If $|\lambda| = 1$, then inequality below must be an equality,

 $|\lambda| = |a_{i1}x_1 + \cdots + a_{i1} + \cdots + a_{in}x_n| \leq a_{i1} + \cdots + a_{in} = 1.$

Thus, positivity of A shows that $|x_i| = 1$ for each j. Moreover, $|a_{i1}x_1 + \cdots + a_{i1} + \cdots + a_{in}x_n| = 1$ implies that $x_j = 1$ for each j.

Since A and A^T are similar, they have equivalent Jordan forms. • $\lim_{n\to\infty} A^n = (b \cdots b)$ where entries of $b \in \mathbb{R}^n$ are positive and sum to 1.

Proof. Let v be a real eigenvector of A corresponding to the eigenvalue 1. Let Y be an invertible matrix such that $A = YJY^{-1}$ with v the first column and J the Jordan form of A. Since any eigenvalue $\lambda \neq 1$ of A^T has $|\lambda|$ < 1 and the eigenvalue 1 has 1-dimensional eigenspace, A also satisfies those properties. Then we see that J^n converges as $n \to \infty$. In fact,

$$
\lim_{n\to\infty} J^n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}.
$$

Consequently,

$$
\lim_{n \to \infty} A^n = Y \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} Y^{-1} = \begin{pmatrix} | & 0 & \cdots & 0 \\ v & \vdots & \ddots & \vdots \\ | & 0 & \cdots & 0 \end{pmatrix} Y^{-1} = vw^T
$$

where $w^T \in M_{1 \times n}(\mathbb{C})$ is the first row of Y^{-1} . Since A is stochastic, so is vw^T . Thus, there is $b \in \mathbb{R}^n$ with nonnegative entries sum to 1 such that all columns of vw^T are b. The vector b with nonnegative entries must in fact have positive entries due to $b = Ab$.

□

□

3. Spectral Theory

Definition 3.1. We say that a $n \times n$ complex matrix A is

- hermitian if $\overline{A}^T = A$,
- skew-hermitian if $\overline{A}^T = -A$,
- unitary if $A\overline{A}^T = I$,
- *normal* if $A\overline{A}^T = \overline{A}^T A$.

For simplicity, we write $\overline{A}^T = A^*$. Note that hermitian, skew-hermitian, and unitary matrices are normal. The eigenvalues of hermitian matrices are all real, those of skew-hermitian matrices are all pure imaginary, and those of unitary matrices are all on the unit circle.

Definition 3.2. For any vectors $v, w \in \mathbb{C}^n$, the hermitian product of v and w is denoted by $\langle v, w \rangle$ and defined by

$$
\langle v, w \rangle = v^* w.
$$

Theorem 3.1 (Common Eigenvector). Let A, B be $n \times n$ complex matrices such that $AB = BA$. Then there is a nonzero vector $v \in \mathbb{C}^n$ which is an eigenvector for both A and B.

Proof. Let $\lambda \in \mathbb{C}$ be an eigenvalue of a matrix A and V_{λ} be the corresponding eigenspace. For any $x \in V_{\lambda}$, we have

$$
ABx = BAx = B(\lambda x) = \lambda Bx.
$$

This shows that $Bx \in V_\lambda$ for any $x \in V_\lambda$. Thus, V_λ is invariant under B. Then let $v \in V_\lambda$ be an eigenvector of B restriced to V_λ . This is a common eigenvector of both A and B.

Proposition 3.1. Let v be an common eigenvector of A and A^* for a normal matrix A. If $\langle v, w \rangle = 0$, then $\langle v, Aw \rangle = 0$.

Proof. Let $A^*v = \lambda v$. Then $\langle v, Aw \rangle = \langle A^*v, w \rangle = \overline{\lambda} \langle v, w \rangle = 0$.

Theorem 3.2 (Spectral Theorem). Let A be an $n \times n$ normal matrix. Then there exists a unitary matrix U and a diagonal matrix D such that $A = UDU^*$.

As a corollary, a hermitian matrix A is diagonalizable through a unitary matrix U and a real diagonal matrix D. Denote by

$$
\lambda_1(A) \geq \lambda_2(A) \geq \cdots \geq \lambda_n(A)
$$

the real eigenvalues of a hermitian matrix A.

Theorem 3.3 (Courant-Fischer). Let A be a hermitian matrix. Then

$$
\lambda_i(A) = \sup_{\dim V = i} \inf_{\substack{v \in V \\ |v| = 1}} v^* A v,
$$

$$
\lambda_i(A) = \inf_{\dim V = n - i + 1} \sup_{\substack{v \in V \\ |v| = 1}} v^* A v.
$$

Proof. The second identity follows from the first by taking $-A$ in the first one. To prove the first identity, assume that the standard basis e_1, \ldots, e_n are the eigenvectors of A. Take $V = \text{span}\{e_1, \ldots, e_i\}$. Then $\dim V = i$ and

$$
\inf_{\substack{v \in V \\ |v|=1}} v^*Av = \lambda_i(A) \le \sup_{\dim V = i} \inf_{\substack{v \in V \\ |v|=1}} v^*Av.
$$

For the reverse inequality, take any V with $\dim V = i$ and $W = \text{span}\{e_i, \ldots, e_n\}$. Then $\dim(V \cap W) \geq 1$ by the dimension identity

 $\dim(V \cap W) = \dim V + \dim W - \dim(V + W).$

We take a unit vector $v \in V \cap W$. Then $v^*Av \leq \lambda_i(A)$ since $v \in W$. Therefore, we have

$$
\inf_{\substack{v \in V \\ |v| = 1}} v^* A v \le \lambda_i(A)
$$

since $v \in V$. Taking the supremum over dim $V = i$, we have the result.

Corollary 3.1. If A and B are both hermitian matrices, then

$$
|\lambda_i(A+B) - \lambda_i(A)| \leq ||B||
$$

where $||B||$ is the operator norm of B.

Proof. We use $v^*(A + B)v = v^*Av + v^*Bv$. Let dim $V = i$. Find a unit vector $v \in V$ such that

$$
v^*Av = \inf_{\substack{v \in V \\ |v| = 1}} v^*Av.
$$

Since $v^*Av \leq \lambda_i(A)$ and $v^*Bv \leq ||B||$, we have

$$
\inf_{\substack{v \in V \\ |v| = 1}} v^*(A + B)v \le \lambda_i(A) + ||B||
$$

Taking the supremum over dim $V = i$, we have

$$
\lambda_i(A+B) \leq \lambda_i(A) + ||B||.
$$

Similarly,

$$
\lambda_i(A) \leq \lambda_i(A - (-B)) + || - B||.
$$

Then the result follows. □

Corollary 3.2 (Weyl's Inequality). If A and B are both hermitian matrices, then

$$
\lambda_{i+j-1}(A+B) \le \lambda_i(A) + \lambda_j(B)
$$

whenever $i, j \geq 1$ and $i + j - 1 \leq n$.

Proof. Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis so that $Av_k = \lambda_k(A)v_k$ for all k, and $\{w_1, \ldots, w_n\}$ be an orthonormal basis so that $Bw_k = \lambda_k(B)w_k$ for all k. Consider $V = \text{span}\{v_i, \ldots, v_n\}$ and $W =$ $\text{span}\{w_j,\ldots,w_n\}.$ Then $\dim V = n - i + 1$, $\dim W = n - j + 1$, and $v^*Av \leq \lambda_i(A)$ for all unit vector $v \in V$, $w^*Bw \leq \lambda_j(B)$ for all unit vector $w \in W$. By the dimension identity, we have

$$
\dim(V \cap W) \ge (n-i+1) + (n-j+1) - n = n - (i+j-1) + 1.
$$

Consider a subspace V' of $V \cap W$ with dim $V' = n - (i + j - 1) + 1$. For any unit vector $v \in V'$, we have

$$
v^*(A+B)v = v^*Av + v^*Bv \le \lambda_i(A) + \lambda_j(B).
$$

Then by the second Courant-Fischer identity, the result follows. □

Definition 3.3. Let $A \in M_n(\mathbb{C})$. The spectral radius of A is defined as

$$
\rho(A) = \max\{|\lambda_1|, \ldots, |\lambda_n|\}
$$

where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of A.

If A is hermitian, we have $\rho(A) = \max\{|\lambda_1(A)|, |\lambda_n(A)|\}.$

Proposition 3.2. The spectral radius function is continuous. That is $\rho : M_n(\mathbb{C}) \to \mathbb{R}$ is continuous.

The proof relies on Rouche's theorem.

Lemma 3.1 (Fekete). Let (a_n) be a subadditive real sequence, that is, $a_n \in \mathbb{R}$ for all n, and $a_{m+n} \le a_m + a_n$ for all m, n. Then $\lim_{n \to \infty} (a_n/n) \in [-\infty, \infty)$ and

$$
\lim_{n \to \infty} \frac{a_n}{n} = \inf_{n \in \mathbb{N}} \frac{a_n}{n}.
$$

Proof. For any $n \in \mathbb{N}$, we have $a_n \leq na_1$. Thus, the sequence (a_n/n) is bounded above. Let $\alpha =$ $\limsup(a_n/n) = \lim_{k \to \infty} (a_{n_k}/n_k)$ with increasing sequence of natural numbers (n_k) . Fix any $m \in \mathbb{N}$. By Euclidean Division Algorithm, we have $n_k = mq_k + r_k$ for some $q_k \in \mathbb{Z} \cap [0, \infty)$ and $0 \leq r_k < m$. Then $q_k \to \infty$ as $k \to \infty$. We have

$$
\frac{a_{n_k}}{n_k} = \frac{a_{mq_k+r_k}}{mq_k+r_k} \le \frac{q_k a_m + a_{r_k}}{mq_k+r_k}.
$$

Taking $k \to \infty$, we obtain $\alpha \leq a_m/m$. Thus, taking infimum over m, we have $\alpha \leq \inf(a_m/m)$. Hence, we must have $\lim_{n \to \infty} (a_n/n) = \alpha$.

Theorem 3.4. Let $A \in M_n(\mathbb{C})$. The following hold

- (1) $\rho(A) < 1$ if and only if $\lim_{k \to \infty} A^k = 0$.
- (2) For any $k \in \mathbb{N}$, $\rho(A) \leq ||A^k||$ $\frac{1}{k}$.
- (3) (Gelfand) $\rho(A) = \lim_{k \to \infty} ||A^k||$ $\frac{1}{k}$.

Proof of (1). Note that $\lim_{k\to\infty} A^k = 0$ if and only if $\lim_{k\to\infty} J^k = 0$ for any Jordan block of A. Also, $\rho(A)$ < 1 if and only if any eigenvalues λ of A satisfy $|\lambda|$ < 1. Then (1) follows from

$$
\lim_{k \to \infty} J^k = 0 \text{ if and only if } J = J(\lambda, r) \text{ with } |\lambda| < 1.
$$

Proof of (2). Let $Av = \lambda v$ for some $\lambda \in \mathbb{C}$ and $0 \neq v \in \mathbb{C}^n$. Then for any $k \in \mathbb{N}$,

$$
|\lambda^k v| = |A^k v| \le ||A^k|| |v|.
$$

Then $|\lambda^k| \leq ||A^k||$. This gives $|\lambda| \leq ||A^k||^{1/k}$.

Proof of (3). We have $||A^k A^j|| \le ||A^k|| \cdot ||A^j||$ for all $k, j \ge 0$. If $||A^k|| = 0$ for some $k \in \mathbb{N}$, then we have $||A^{k+j}|| = 0$ for all $j \in \mathbb{N}$. Thus, we have $\lim_{k \to \infty} ||A^k||^{1/k} = 0$. Assume $||A||^k > 0$ for all $k \in \mathbb{N}$. Then by Fekete's lemma, the sequence $(\frac{1}{k} \log ||A^k||)$ converges. Thus, the sequence $(||A^k||^{1/k})$ converges. Consider the function $f: \{z \in \mathbb{C} \mid |z| > \rho(A)\} \to M_n(\mathbb{C})$ defined by $f(z) = (zI - A)^{-1}$. This is a vector-valued analytic function Laurant series is

$$
\frac{1}{z} \frac{1}{1 - (A/z)} = \frac{1}{z} \sum_{k=0}^{\infty} \frac{A^k}{z^k}.
$$

The series cannot converge for any $|z| < \rho(A)$, so its radius of convergence as a power series of $w = 1/z$ is $\rho(A)^{-1}$. By Cauchy-Hadamard's radius of convergence formula, we must have

$$
\rho(A) = \limsup_{k \to \infty} ||A^k||^{1/k} = \lim_{k \to \infty} ||A^k||^{1/k}.
$$

□

Note that this proof works when A is a bounded linear operator on a Banach space (see [7]).

The locations of eigenvalues depending on the entries of matrices can be found in Gershgorin's disk theorem.

Theorem 3.5 (Gershgorin's Disk Theorem). Let $A \in M_n(\mathbb{C})$. For each $i = 1, \ldots, n$, let $R_i = \sum_{j \neq i} |a_{ij}|$. Then the set of eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$ of A satisfies

$$
\{\lambda_1,\ldots,\lambda_n\}\subseteq \cup_{i=1}^n D(a_{ii},R_i).
$$

Proof. Let λ be an eigenvalue of A. Choose an eigenvector x with $|x_i| = \max_{1 \leq j \leq n} |x_j|$. Then by dividing x_i , we may impose $|x_j| \leq 1$ for all $j = 1, \ldots, n$, and $x_i = 1$. Since $Ax = \lambda x$, we have

$$
\lambda = \lambda x_i = \sum_j a_{ij} x_j = a_{ii} + \sum_{j \neq i} a_{ij} x_j.
$$

By triangle inequality, it follows that

$$
|\lambda - a_{ii}| \le R_i.
$$

□

□

□

Thus, we have the result. \Box

The eigenvalue inequalities can be improved in case the matrix A is hermitian.

Theorem 3.6. Let $A \in M_n(\mathbb{C})$ be hermitian. Let c_j be the j-th column of A with the j-th component is set to zero. Then for each $j = 1, \ldots n$, there is an eigenvalue λ of A such that $|\lambda - a_{ij}| \leq ||c_j||_2$ where $||c_j||_2$ is ℓ_2 -norm of c_j .

Proof. Let $E_j = c_j e_j^T + e_j \overline{c_j}^T$, where e_j is the standard basis vector. Then a_{jj} is an eigenvalue of $A - E_j$. Since A and $A - E_j$ are both hermitian, their is an eigenvalue λ of A satisfies

$$
|\lambda - a_{jj}| \leq ||E_j|| = ||c_j||_2
$$

Thus, the result follows. □

This is a special case of Bauer-Fike theorem (see [9, Theorem 5.15]).

REFERENCES

- [1] P. Cohn, On the Structure of the GL_2 of a Ring, Publications mathématiques de l'I.H.É.S., tome 30(1966), 5-53.
- [2] P. Fuhrmann, A Polynomial Approach to Linear Algebra, 2nd edition, Springer.
- [3] R. Horn, C. Johnson, Topics in Matrix Analysis, Cambridge University Press.
- [4] S. Hou, W. Pang, Inversion of Confluent Vandermonde Matrices, Computers and Mathematics with Applications, 43(2002) 1539-1547.
- [5] P. Lagerstrom, A Proof of Theorem on Commutative Matrices, Bulletin of AMS, Volume 51, 535-536
- [6] K. Matthews, MP274 Lecture Notes 1991, www.numbertheory.org/courses/MP274/applic.pdf
- [7] M. Reed, B. Simon, Method of Modern Mathematical Physics, Academic Press.
- [8] L. Solomon, Similarity of the Companion Matrix and its Transpose, Linear Algebra and its Applications 302–303 (1999) 555–561
- [9] E. Suli, D. Mayers, An Introduction to Numerical Analysis, Cambridge University Press.
- [10] T. Tao, Topics in Random Matrix Theory, AMS, GSM Volume 132
- [11] O. Taussky, H. Zassenhaus, On the Similarity Transform between a Matrix and its Transpose, Pacific J. Math. Volume 9, Number 3 (1959), 893-896.